Hammiche, A.; Bozec, L.; Conroy, M.; Pollock, H. M.; Mills, G.; Weaver, J. M. R.; Price, D. M.; Reading, M.; Hourston, D. J.; Song, M.; Highly localized thermal, mechanical and spectroscopic characterization using miniaturized thermal probes. Journal of Vacuum Science & Technology B 18(3) May/Jun (2000) 1322-1332

In this article we demonstrate the versatility of use of cantilever resistive thermal probes. The probes used are of two kinds, Wollaston wire probes and batch-microfabricated probes. Both types of probes can be operated in two modes: a passive mode of operation whereby the probe acts as a temperature sensor, and an active mode of whereby the probe acts as a highly localized heat source. We present data that demonstrates the characterization of some composite polymeric samples. In particular, the combination of scanning thermal microscopy with localized thermomechanometry (or localized thermomechanical analysis, L-TMA) shows promise. Comparison with data from conventional bulk differential scanning calorimetry shows that inhomogeneities within materials that cannot be detected using conventional bulk thermal methods are revealed by L-TMA. We also describe a new mode of thermal imaging, scanning thermal expansion microscopy. Finally, we outline progress towards the development of localized Fourier transform infrared spectroscopy (FT-IR): here the probe, in this case operated in the temperature-sensing mode, detects the photothermal response of a specimen exposed to the beam and heated thereby.

[back] [full text (920 kB)]